
PYTHON PROGRAMMING - IPYTHON PROGRAMMING - I

Chap - 2

Basics of

Python Programming

By-

Prof. A. P. Chaudhari

(M.Sc. Computer Science, SET)

HOD,

Department of Computer Science

S.V.S’s Dadasaheb Rawal College,

Dondaicha

Chap – 2 Basics of Python Programming

• Python Identifiers, Variables and Keywords

• Putting Comments

• Expressions and Statements

• Standard Data Types – Basic, None, Boolean, Numbers

• Type Conversion Function

• Operators in Python

• Operator Precedence

• Accepting Input and Displaying Output

Flow Control Statements -

• Conditional Statements

• Looping Statements

• break, continue, pass Statements

Identifiers:

• A Python identifier is a name used to identify a variable, function,

class, module or other object.

• An identifier starts with a letter A to Z or a to z or an underscore (_)

followed by zero or more letters, underscores and digits 0 to 9.

• Python does not allow punctuation characters such as @, $, and %

within identifiers.

• Python is a case sensitive programming language. Thus, Manpower

and manpower are two different identifiers in Python.

Identifiers:

Here are naming conventions for Python identifiers −

• Class names start with an uppercase letter. All other identifiers start

with a lowercase letter.

• Starting an identifier with a single leading underscore indicates that

the identifier is private.

• Starting an identifier with two leading underscores indicates a strongly

private identifier.

• If the identifier also ends with two trailing underscores, the identifier is

a language-defined special name.

Variables:

Variables are nothing but reserved memory locations to store

values. This means that when you create a variable you reserve some

space in memory.

Based on the data type of a variable, the interpreter allocates

memory and decides what can be stored in the reserved memory.

Therefore, by assigning different data types to variables, you can store

integers, decimals or characters in these variables.

Assigning Values to Variables:

Python variables do not need explicit declaration to reserve

memory space. The declaration happens automatically when you assign

a value to a variable. The equal sign (=) is used to assign values to

variables.

Variables:

The operand to the left of the = operator is the name of the

variable and the operand to the right of the = operator is the value stored

in the variable. For example −

counter = 100 # An integer assignment

miles = 1000.0 # A floating point

name = "John" # A string

Here, 100, 1000.0 and "John" are the values assigned to counter, miles,

and name variables, respectively.

Variables:

Multiple Assignment:

Python allows you to assign a single value to several variables

simultaneously. For example :− a = b = c = 1

Here, an integer object is created with the value 1, and all three variables

are assigned to the same memory location.

You can also assign multiple objects to multiple variables. For

example − a, b, c = 1, 2, "john"

Here, two integer objects with values 1 and 2 are assigned to

variables a and b respectively, and one string object with the value "john"

is assigned to the variable c.

Keywords:

The following list shows the Python keywords. These are reserved

words and you cannot use them as constant or variable or any other identifier

names. All the Python keywords contain lowercase letters only.

And exec not

assert finally or

break for pass

class from print

continue global raise

Def if return

Del import try

Elif in while

Else is with

except lambda yield

Putting Comments:
A hash sign # that is not inside a string literal begins a comment. All

characters after the # and up to the end of the physical line are part of the

comment and the Python interpreter ignores them.

First comment

print "Hello, Python!" # second comment

This produces the following result −

Hello, Python!

Python does not have a syntax for multi-line comments. If you wish to

add a multiline comment you could insert a # for each line, as like in following

code:

This is a comment.

This is a comment, too.

This is more comment

Expressions and Statements:

Expression:

Expression in any programing language is a combination of values, and

operators. A value is also considered expression and same with a variable, so

the followings are all legal expressions.

e.g.: If you type an expression in an interactive mode, the interpreter

evaluates it and display the result:

1) >>> 5 * 4

20

2) >>> 2 + 2

4

3) >>> 'ABC‘ + 'abc'

'ABCabc'

Expressions and Statements:

Statements:

A statement is a part of code that is executed by the Python interpreter.

When you type a statement in interactive mode, the interpreter executes it and

display the result, if there is one statement.

A script usually contains a sequence of statements. If there is more than

one statement, the result appear at a time as the statement execute.

e.g.:

print 10

x = 20

print x

O/P: 10

20

Data Types:

The data stored in memory can be of many types. For example,

a person's age is stored as a numeric value and his or her address is

stored as alphanumeric characters. Python has various standard data

types that are used to define the operations possible on them and the

storage method for each of them.

Python has five standard data types −

1) Numbers

2) String

3) List

4) Tuple

5) Dictionary

Data Types:

1) Numbers:

Number data types store numeric values. Number objects are

created when you assign a value to them. For example −

var1 = 1

var2 = 10

Python supports four different numerical types −

i. int (signed integers)

ii. long (long integers, they can also be represented in octal and hexadecimal)

iii. float (floating point real values)

iv. complex (complex numbers)

Data Types:

Here are some examples of numbers −

• Python allows you to use a lowercase l with long, but it is recommended that you

use only an uppercase L to avoid confusion with the number 1. Python displays

long integers with an uppercase L.

• A complex number consists of an ordered pair of real floating-point numbers

denoted by x + yj, where x and y are the real numbers and j is the imaginary unit.

int long float complex

10 51924361L 0.0 3.14j

100 -0x19323L 15.20 45.j

-786 0122L -21.9 9.322e-36j

080 0xDEFABCECBDAECBFBAEl 32.3+e18 .876j

-0490 535633629843L -90. -.6545+0J

-0x260 -052318172735L -32.54e100 3e+26J

0x69 -4721885298529L 70.2-E12 4.53e-7j

Data Types:

2) Strings:

Strings in Python are identified as a contiguous set of characters

represented in the quotation marks. Python allows for either pairs of single or

double quotes. Subsets of strings can be taken using the slice operator ([] and [:])

with indexes starting at 0 in the beginning of the string.

The plus (+) sign is the string concatenation operator and the asterisk (*)

is the repetition operator. For example −

str = ‘Good Morning'

print str # Prints complete string (Good Morning)

print str[0] # Prints first character of the string (G)

print str[5:8] # Prints characters starting from 5th to 8th (Morn)

print str[5:] # Prints string starting from 5th character (Morning)

print str * 2 # Prints string two times (Good MorningGood Morning)

print str + “ Ram" # Prints concatenated string (Good Morning Ram)

Data Types:

3) Lists:

Lists are the most versatile of Python's compound data types. A list

contains items separated by commas and enclosed within square brackets ([]). To

some extent, lists are similar to arrays in C. One difference between them is that

all the items belonging to a list can be of different data type.

The values stored in a list can be accessed using the slice operator ([]

and [:]) with indexes starting at 0 in the beginning of the list. The plus (+) sign is

the list concatenation operator, and the asterisk (*) is the repetition operator.

For example −

list = ['abcd', 135, 2.23, ‘shyam', 70.2]

tinylist = [123, ‘viraj']

Data Types:

list = ['abcd', 135, 2.23, ‘shyam', 70.2]

tinylist = [123, ‘viraj']

print list # Prints complete list ['abcd', 135, 2.23, ‘shyam', 70.2]

print list[0] # Prints first element of the list abcd

print list[1:3] # Prints elements starting from 2nd till 3rd [135, 2.23]

print list[2:] # Prints elements starting from 3rd element [2.23, shyam ', 70.2]

print tinylist * 2 # Prints list two times [123, ' viraj ', 123, ' viraj ']

print list + tinylist # Prints concatenated lists

['abcd', 135, 2.23, ‘shyam', 70.2, 123, ‘viraj']

Data Types:

4) Tuples:

A tuple is another sequence data type that is similar to the list. A tuple

consists of a number of values separated by commas. Unlike lists, however,

tuples are enclosed within parentheses.

The main differences between lists and tuples are: Lists are enclosed in

brackets ([]) and their elements and size can be changed, while tuples are

enclosed in parentheses (()) and cannot be updated. Tuples can be thought of

as read-only lists.

For example −

tuple = ('abcd', 135, 2.23, ‘shyam', 70.2)

tinytuple = (123, ‘viraj')

Data Types:

tuple = ('abcd', 135, 2.23, ‘shyam', 70.2)

tinytuple = (123, ‘viraj')

print tuple # Prints complete list ('abcd', 135, 2.23, ‘shyam', 70.2)

print tuple[0] # Prints first element of the list abcd

print tuple[1:3] # Prints elements starting from 2nd till 3rd (135, 2.23)

print tuple[2:] # Prints elements starting from 3rd element

(2.23, ‘shyam', 70.2)

print tinytuple * 2 # Prints list two times (123, ‘viraj‘, 123, ‘viraj')

print tuple + tinytuple # Prints concatenated lists

('abcd', 135, 2.23, ‘shyam', 70.2, 123, ‘viraj')

Data Types:

The following code is invalid with tuple, because we attempted to update a

tuple, which is not allowed. Similar case is possible with lists −

tuple = ('abcd', 135, 2.23, ‘shyam', 70.2)

list = ['abcd', 135, 2.23, ‘shyam', 70.2]

tuple[2] = 1000 # Invalid syntax with tuple

list[2] = 1000 # Valid syntax with list

Data Types:

5) Dictionary:

Python's dictionaries are kind of hash table type. They work like

associative arrays and consist of key-value pairs. A dictionary key can be almost

any Python type, but are usually numbers or strings. Values on the other hand,

can be any arbitrary Python object.

Dictionaries are enclosed by curly braces ({ }) and values can be

assigned and accessed using square braces ([]).

For example −

dict = { }

dict ['one'] = "This is one"

dict [2] = "This is two"

tinydict = {'name': 'john', 'code':6734, 'dept': 'sales'}

Data Types:

dict = { }

dict ['one'] = "This is one"

dict [2] = "This is two"

tinydict = {'name': 'john', 'code':6734, 'dept': 'sales'}

print dict ['one'] # Prints value for 'one' key This is one

print dict[2] # Prints value for 2 key This is two

print tinydict # Prints complete dictionary

{'dept': 'sales', 'code': 6734, 'name': 'john'}

print tinydict.keys() # Prints all the keys ['dept', 'code', 'name']

print tinydict.values() # Prints all the values ['sales', 6734, 'john']

Dictionaries have no concept of order among elements. It is incorrect to

say that the elements are "out of order"; they are simply unordered.

Type Conversion Function:
Sometimes, it may be needed to perform conversion between the built-

in types. To convert between types, you can simply use the type name as a

function. There are a number of built-in functions to perform the conversion from

one data type to another. These functions return a new object that represents the

converted value.

Function Description

int (x) Converts x into an integer.

long(x) Converts x into long integer.

float(x) Converts x into floating-point number.

complex(real,[imag]) Creates a complex number.

str(x) Converts x into a string.

tuple(x) Converts x into tuple.

Type Conversion Function:

Function Description

list (x) Converts x into a list.

dict(x)
Creates a dictionary. x must be a sequence of (key,value)

tuples.

char (x) Converts x into character.

hex(x) Converts x into hexadecimal string.

oct(x) Converts x into octal string.

Operators:

Operators are use to perform operations on the value of operands.

Consider the expression 4 + 5 = 9. Here, 4 and 5 are called operands and + is

called operator.

Python language supports the following types of operators-

1) Arithmetic Operators

2) Comparison Relational Operators

3) Assignment Operators

4) Logical Operators

5) Bitwise Operators

6) Membership Operators

7) Identity Operators

Operators:

1) Arithmetic Operators:

Assume variable a holds 20 and variable b holds 10, then −

Operator Description Example

+ Addition Adds values on either side of the operator. a + b = 30

- Subtraction Subtracts right hand operand from left hand operand. a – b = 10

* Multiplication Multiplies values on either side of the operator a * b = 200

/ Division Divides left hand operand by right hand operand a / b = 2

% Modulus
Divides left hand operand by right hand operand and

returns remainder
a % b = 0

** Exponent Performs exponential power calculation on operators
a**b =20 to the

power 10

//

Floor Division

The division of operands where the result is the

quotient in which the digits after the decimal point are

removed. But if one of the operands is negative, the

result is floored, i.e., rounded away from zero towards

negative infinity −

9//2 = 4 and

9.0//2.0 = 4.0,

-11//3 = -4,

-11.0//3 = -4.0

Operators:

2) Comparison Operators :

These operators compare the values on either sides of them and decide

the relation among them. They are also called Relational operators.

Assume variable a holds 10 and variable b holds 20, then −

Operator Description Example

==
If the values of two operands are equal, then the condition becomes

true.
a==b is not true.

!= If values of two operands are not equal, then condition becomes true. a!=b is true.

<> If values of two operands are not equal, then condition becomes true.

a<>b is true. This

is similar to !=

operator.

>
If the value of left operand is greater than the value of right operand,

then condition becomes true.
a>b is not true.

<
If the value of left operand is less than the value of right operand, then

condition becomes true.
a<b is true.

>=
If the value of left operand is greater than or equal to the value of right

operand, then condition becomes true.
a>=b is not true.

<=
If the value of left operand is less than or equal to the value of right

operand, then condition becomes true.
a<=b is true.

Operators:

3) Assignment Operators :

Assume variable a holds 10 and variable b holds 20, then −

Operator Description Example

=
Assigns values from right side operands to left

side operand

c = a + b assigns

value of a + b into c

+=

Add AND

It adds right operand to the left operand and

assign the result to left operand

c += a is equivalent to

c = c + a

-=

Subtract AND

It subtracts right operand from the left operand

and assign the result to left operand

c -= a is equivalent to

c = c - a

*=

Multiply AND

It multiplies right operand with the left operand

and assign the result to left operand

c *= a is equivalent to

c = c * a

/=

Divide AND

It divides left operand with the right operand and

assign the result to left operand

c /= a is equivalent to

c = c / a

%=

Modulus AND

It takes modulus using two operands and assign

the result to left operand

c %= a is equivalent to

c = c % a

**=

Exponent AND

Performs exponential power calculation on

operators and assign value to the left operand

c **= a is equivalent to

c = c ** a

//=

Floor Division

It performs floor division on operators and

assign value to the left operand

c //= a is equivalent to

c = c // a

Operators:

4) Logical Operator: The following table lists the logical operators −

Assume Boolean variables A holds true and variable B holds false, then -

Operator Description Example

&&

(logical and)

Called Logical AND operator. If both the

operands are non-zero, then the condition

becomes true.

(A && B) is

false

||

(logical or)

Called Logical OR Operator. If any one of

the two operands are non-zero, then the

condition becomes true.
(A || B) is true

!

(logical not)

Called Logical NOT Operator. Use to

reverses the logical state of its operand. If a

condition is true then Logical NOT operator

will make false.

!(A && B) is

true

Operators:

5) Bitwise Operator: Python defines several bitwise operators, which can be

applied to the integer types- long, int, short, char, and byte. Bitwise operator

works on bits and performs bit-by-bit operation.

Assume if a = 60 and b = 13; now in binary format they will be as follows −

a = 0011 1100

b = 0000 1101

& (bitwise and)

Binary AND Operator copies a bit

to the result if it exists in both

operands.

(A & B)

will give 12 which is

0000 1100

| (bitwise or)
Binary OR Operator copies a bit if it

exists in either operand.

(A | B)

will give 61 which is

0011 1101

^ (bitwise XOR)

Binary XOR Operator copies the bit

if it is set in one operand but not

both.

(A ^ B)

will give 49 which is

0011 0001

Operators:

6) Membership Operator:

Python’s membership operators test for membership in a sequence,

such as strings, lists, etc.

Operator Description Example

in

Evaluates to true if it finds a

variable in the specified sequence

and false otherwise.

x in y, here in results in a 1 if

x is a member of sequence y.

not in

Evaluates to true if it does not finds

a variable in the specified

sequence and false otherwise.

x not in y, here not in results

in a 1 if x is not a member of

sequence y.

Operators:

7) Identity Operator:

Identity operators compare the memory locations of two objects. There

are two Identity operators explained below −

Operator Description Example

is

Evaluates to true if the variables on either

side of the operator point to the same

object and false otherwise.

x is y, here is results in

1 if idx equals idy.

is not

Evaluates to false if the variables on either

side of the operator point to the same

object and true otherwise.

x is not y, here is not

results in 1 if idx is not

equal to idy.

Displaying Output:

The simplest way to produce output is using the print statement where

you can pass zero or more expressions separated by commas. This function

converts the expressions you pass into a string and writes the result to standard

output as follows −

print "Python is really a great language,", "isn't it?“

This produces the following result on your standard screen −

Python is really a great language, isn't it?

Accepting Input:

Python provides two built-in functions to read a line of text from

standard input, which by default comes from the keyboard. These functions are −

1) raw_input()

2) input()

1) raw_input():

This function works in older version. It takes exactly what it typed from

the keyboard, convert it into string and then return it to the variable in which we

want to store it.

e.g: val = raw_input(“Enter any value:”)

print “Value is: “,val

o/p: Enter any value: 5 * 4

Value is: 5 * 4

Accepting Input:

2) input():

This function initially takes the input from the user and then evaluates

the expression, it means Python automatically identifies whether user entered a

string or a number or list. If the input provided is not correct then either syntax

error or exception is raised by Python.

e.g: val = input(“Enter any value:”)

print “Value is: “,val

o/p: Enter any value: 5 * 4

Value is: 20

Conditional Statements:

Conditional Statement in Python performs different computations or

actions depending on whether a specific condition evaluates to True or False.

Conditional statement are handled by if statements in Python.

In Python, if statement is used for decision

making. You need to determine which action to take

and which statements to execute if outcome is TRUE

or FALSE otherwise.

Python programming language provides

following types of conditional statements.

1) if statement

2) if … else statement

3) Nested if statement

Conditional Statements:

1) if statement:

It is similar to that of other languages. The if statement contains a

logical expression using which data is compared and a decision is made based

on the result of the comparison.

Syntax: if condition:

statement(s)

If the condition evaluates to TRUE, then the block of statement(s) inside

the if statement is executed. If condition expression evaluates to FALSE, then the

first set of code after the end of the if statement(s) is executed.

Ex 1:

no = 5

if no > 0:

print “Positive Value”

o/p – Positive Value

Ex 2: a = 10

b = 5

if a > b:

print “A greater than B”

o/p- A greater than B

Conditional Statements:

2) If…else statement:

An else statement can be combined with an if statement.

An else statement contains the block of code that executes if the conditional

expression in the if statement resolves to FALSE value.

Syntax:

if condition:

statement(s)

else:

statement(s)

Conditional Statements:

Example 1:

a = input("Enter first value:")

b = input("Enter second value:")

if a>b:

print "A greater than B"

else:

print "B greater than A"

o/p – Enter first value: 5

Enter second value: 10

B greater than A

Example 2:

a = input("Enter any number:")

if a%2==0:

print "Even Number"

else:

print "Odd Number"

o/p – Enter any number: 18

Even Number

Enter any number: 21

Odd Number

Conditional Statements:

3) Nested if statement:

There may be a situation when you want to check for another condition

after a condition resolves to true. In such a situation, you can use the

nested if construct.

In a nested if construct, you can have an if...elif...else construct inside

another if...elif...else construct.

Syntax:

if expression1:

statement(s)

if expression2:

statement(s)

elif expression3:

statement(s)

elif expression4:

statement(s)

else: statement(s)

else: statement(s)

Conditional Statements:

Example:

per = input("Enter Percentage:")

if per <=100:

print "Percentage is less than 100"

if per >= 70:

print "Distinction Class"

elif per >= 60:

print "First Class"

elif per >= 35:

print "Second Class"

else:

print "Fail"

else:

print "Not valid Percentage"

O/P:

Enter Percentage: 85

Distinction Class

Enter Percentage: 48

Second Class

Enter Percentage: 24

Fail

Looping Statements:

In general, statements are executed sequentially: The first statement in

a function is executed first, followed by the second, and so on. There may be a

situation when you need to execute a block of code several number of times.

A loop statement allows us to

execute a statement or group of statements

multiple times.

Python programming language

provides following types of loops to handle

looping requirements.

1) while loop

2) for loop

3) nested loops

Looping Statements:

1) While loop:

A while loop statement in Python programming language repeatedly

executes a target statements as long as a given condition is true.

Syntax:

while expression:

statement(s)

Here, statement(s) may be a single statement or a block of statements.

The condition may be any expression, and true is any non-zero value. The loop

iterates while the condition is true.

When the condition is tested and the result is false, the loop body will be

skipped and the first statement after the while loop will be executed.

Looping Statements:

e.g 1:

count = 1

while (count < 6):

print 'The count is:', count

count = count + 1

print "Good bye!"

O/P:

The count is: 1

The count is: 2

The count is: 3

The count is: 4

The count is: 5

Good bye!

e.g 2:

no = input('Enter any number: ')

s = 0;

while no > 0:

r = no % 10

s = s + r

no = no / 10

print 'Sum is: ',s

O/P:

Enter any number: 352

Sum is: 10

Looping Statements:

2) For loop:

The for loop in Python is used to iterate the statements or a part of the

program several times. It is frequently used to traverse the data structures like

list, tuple, or dictionary.

Syntax:

for iterating_var in sequence:

statement(s)

e.g 1:

fruits = ["apple", "banana", "cherry"]

for x in fruits:

print(x)

O/P: apple

banana

cherry

e.g 2:

str = "Python"

for i in str:

print(i)
O/P: P

y
t
h
o
n

Looping Statements:

e.g 3:

list = [1,2,3,4,5,6,7,8]

n = 5

for i in list:

c = n*i

print(c)

O/P:

5

10

15

20

25

30

35

40

e.g 4:

list = [10,30,23,43,65,12]

sum = 0

for i in list:

sum = sum+i

print("The sum is: ",sum)

O/P:

The sum is: 183

Looping Statements:

For loop Using range() function:

The range() function is used to generate the sequence of the numbers.

If we pass the range(10), it will generate the numbers from 0 to 9.

Syntax:

range(start, stop, step_size)

 The start represents the beginning of the iteration.

 The stop represents that the loop will iterate till stop-1. The range(1,5) will

generate numbers 1 to 4 iterations. It is optional.

 The step size is used to skip the specific numbers from the iteration. By

default, the step size is 1. It is optional.

Looping Statements:

e.g 1:

for i in range(1,6):

print(i)

O/P: 1 2 3 4 5

e.g 2:

n = input("Enter the number ")

for i in range(1,11):

c = n*i

print(c)

O/P: Enter the number 8

8 16 24 32 40 48 56 64 72 80

e.g 3:

n = input("Enter the number ")

for i in range(2,n,2):

print(i)

O/P:

Enter the number 20

2 4 6 8 10 12 14 16 18

Looping Statements:

3) Nested loop:

Python programming language allows to use one loop inside another

loop. The inner loop is executed n number of times for every iteration of the outer

loop.

Syntax:

for iterating_var in sequence:

for iterating_var in sequence:

statements(s)

statements(s)

A final note on loop nesting is that you can put any type of loop inside of

any other type of loop. For example a for loop can be inside a while loop or vice

versa.

Looping Statements:

e.g :

adj = ["red", "big", "tasty"]

fruits = ["apple", "banana", "cherry"]

for x in adj:

for y in fruits:

print x, y

O/P:

red apple

red banana

red cherry

big apple

big banana

big cherry

tasty apple

tasty banana

tasty cherry

Break Statements:

You might face a situation in which you need to exit a loop completely

when an external condition is triggered or there may also be a situation when you

want to skip a part of the loop and start next execution.

Python provides break and continue statements to handle such

situations and to have good control on your loop.

Break Statement: The break statement in Python terminates the current loop

and resumes execution at the next statement, just like the traditional break found

in C.

The most common use for break is when some external condition is

triggered requiring an exit from a loop. The break statement can be used in

both while and for loops.

Break Statements:

e.g. 1:

for letter in 'Python':

if letter == 'h':

break

print 'Current Letter :', letter

O/P:

Current Letter : P

Current Letter : y

Current Letter : t

e.g. 2:

var = 1

while var < 10:

print ‘Variable value :', var

if var == 3:

break

var = var + 1

print "Good bye!"

O/P:

Variable value : 1

Variable value : 2

Variable value : 3

Good bye!

Continue Statements:

The continue statement in Python returns the control to the beginning

of the loop. The continue statement rejects all the remaining statements in the

current iteration of the loop and moves the control back to the top of the loop.

The continue statement skips the remaining lines of code inside the loop and

start with the next iteration.

The continue statement can be used in both while and for loops.

e.g.1:

i = 1

while(i < 10):

if(i == 5):

continue

print(i)

i = i+1

O/P:

1

2

3

4

Continue Statements:

e.g. 2:

str = 'Python'

for i in str:

if i=='t':

continue

print i

O/P:

P

y

h

o

n

e.g. 3:

fruit = ['Apple', 'Banana', 'Mango', 'Papaya']

for i in fruit:

if i=='Banana':

continue

print i

O/P:

Apple

Mango

Papaya

